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A statistical ensemble of large-eddy simulations (LES) is run simultaneously for the
same flow. The information provided by the different large-scale velocity fields is used
in an ensemble-averaged version of the dynamic model. This produces local model
parameters that only depend on the statistical properties of the flow. An important
property of the ensemble-averaged dynamic procedure is that it does not require
any spatial averaging and can thus be used in fully inhomogeneous flows. Also,
the ensemble of LES provides statistics of the large-scale velocity that can be used
for building new models for the subgrid-scale stress tensor. The ensemble-averaged
dynamic procedure has been implemented with various models for three flows:
decaying isotropic turbulence, forced isotropic turbulence, and the time-developing
plane wake. It is found that the results are almost independent of the number of LES
in the statistical ensemble provided that the ensemble contains at least 16 realizations.

1. Introduction
The number of degrees of freedom needed to characterize a velocity field ui that

corresponds to a turbulent flow is known to increase as Re9/4 (Re is the Reynolds
number) in three-dimensional turbulent systems. Direct numerical simulations (DNS)
of the Navier–Stokes equations governing the evolution of such systems are thus
limited to moderately small Reynolds numbers. There is thus an interest in developing
techniques in which only a fraction of the total number of degrees of freedom
is actually simulated. Among these techniques, large-eddy simulation (LES) and
Reynolds-averaged Navier–Stokes (RANS) simulation have attracted much interest
in the past few decades. In LES, the number of degrees of freedom is reduced by
using a spatial filtering:

ūi(x) =

∫
dyG(x− y)ui(y), (1.1)

where G is the filter kernel and ūi is the LES field. In RANS, an ensemble averaging
is used to define the RANS field Ui:

Ui = 〈ui〉, (1.2)

In both cases, the equations for ūi or for Ui contain an unknown stress term that
requires modelling. The purpose of the approach developed here is to combine
concepts from the two methods to produce a statistical version of LES.

The present approach is motivated by the fact that, in both LES and RANS, models
for the degrees of freedom that have been eliminated are inspired from statistical
theories of turbulence. It is thus implicitly assumed that the filtering and ensemble
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averaging can both be regarded as projective operations that associate a number of
different velocity realizations with a single LES or RANS field. There is, however, an
important difference between ensemble averaging and spatial filtering. The ensemble
averaging operation reduces the number of degrees of freedom by so much that
almost no useful information on the fluctuations δui ≡ ui −Ui can be deduced from
the knowledge of Ui alone. On the other hand, in LES the statistics of the unresolved
scales u′i = ui− ūi must be closely related to the statistics of the resolved scales ūi since
there is no clear scale separation between them. Hence, knowledge of the statistical
properties of the LES fields ūi should be helpful in developing LES models. The
advantage of studying a statistical ensemble of LES is the ability to extract statistical
information for building models for the unresolved scales. This will be explored
in § 3.

The definition of equivalent and independent LES fields is not necessarily obvious
and should probably depend on the motivation for the simulation. We propose in § 2
some conditions under which two simulations of a turbulent flow will be supposed
to be independent and equivalent. In § 3, we will show that the information from
an ensemble of LES yields a good framework for developing a local version of
the dynamic procedure in which model parameters are computed using statistical
quantities. The application of this approach to isotropic turbulence is presented in
§ 4. Application to the wake flow is presented in § 5. In this last case, it is shown that
the information from an ensemble of realizations can be used to develop new models
that explicitly incorporate averaged quantities made available through the ensemble.

2. Statistical ensemble of LES
The equation for the LES is obtained by applying a spatial filter to the Navier–

Stokes equations. The LES equation thus describes the evolution of a filtered velocity
field ūi, which explicitly depends on the small scales through the subgrid-scale stress
τij = uiuj − ūi ūj:

∂tūi + ∂jūj ūi = −∂ip̄+ ν0∇2ūi − ∂jτij . (2.1)

For simplicity, we only consider incompressible flows, in which p, the pressure divided
by the density, is determined by the incompressibility condition. The unknown tensor
τij appears in the equation for the large-scale velocity ūi but it depends on the
small-scale velocity field. The purpose of this study is to explore the advantages of
simultaneously running several statistically equivalent and independent LES for the
same flow. In practice, we thus replace (2.1) by the following set of equations for R
large-scale velocity fields ūri :

∂tū
r
i + ∂jū

r
j ū
r
i = −∂ip̄r + ν0∇2ūri − ∂jτrij , (2.2)

where r = 1, . . . , R.
It is worth mentioning that the use of an ensemble of LES is not per se much more

expensive than the use of a single realization. To show this, let us consider a stationary
LES and denote by tt the time of the transient period between the beginning of the
simulation and the time at which the turbulence becomes fully developed. Let us also
denote by ts the time (beyond tt) required to converge the statistics. Then, the CPU
time required for obtaining converged statistics with a single LES is tt + ts. With an
ensemble of realizations, statistics are accumulated over both the ensemble and time.
Thus, for an equivalent sample, the ensemble only needs to be advanced in time by
the amount ts/R. The total CPU cost for the ensemble is thus R(tt + ts/R), which



Statistical ensemble of large-eddy simulations 197

amounts to an overhead of (R− 1)tt over a single realization. If the ratio between the
transient phase and the time needed to converge statistics is small, then the additional
cost will be moderate. In the examples treated below, this additional cost is totally
negligible. Moreover, if the LES is not stationary and if there is no direction of
homogeneity, the ensemble-averaged approach is presumably the only way to obtain
statistics.

2.1. Statistically equivalent and independent LES

The information from an ensemble of LES can only be useful if the LES fields ūri
are all independent. Yet all these fields have to correspond to the same experimental
situation if some meaningful statistics are to be extracted from the ensemble. We
therefore must define what will be considered statistically equivalent but independent
LES fields. Although a proof of existence and uniqueness of solutions for the Navier–
Stokes equations is not yet available, from a practical point of view a flow described
by the Navier–Stokes equations or by an LES equation is assumed to be fully defined
by knowing

(i) the domain D in which the flow is considered;
(ii) the conditions on the boundary ∂D of this domain ui(∂D, t) = bi(t) where the

functions bi(t) are given;
(iii) the initial conditions ui(x, 0) = u0

i (x) ∀x ∈ D.
However, in a simulation of a turbulent flow only the domain and the boundary
conditions are rigorously fixed. Indeed, because of the lack of sensitivity to initial
conditions in turbulence, different simulations with different initial conditions sharing
some properties are considered to characterize the same flow. Thus, the requirement
that the initial conditions are known is somewhat relaxed for turbulent flows and
point (iii) is thus replaced by a weaker constraint:

(iii′) the initial condition ui(x, 0) = u0
i (x;wl) is generated using random numbers wl

and satisfies a certain number of constraints: Ps[u
0
i ] = ps, s = 1, . . . S .

For example, in homogeneous turbulence, the most important constraint will be on
the spectrum E(k) of u0

i :

k2

∫
dΩ|ũ0

i (k, 0)|2 = E(k), (2.3)

where ũ0
i is the Fourier transform of u0

i and Ω is the solid angle in the wavenumber
d3k = k2 dΩ dk. For channel flow, one could impose the plane-averaged profile of
both the velocity U(y) and the Reynolds stress Rij(y):

〈u0
i 〉x,z = U(y)δi,1, (2.4)

〈(u0
i −U(y)δi,1)

2〉x,z = Rij(y), (2.5)

where x, y and z are respectively the longitudinal, the wall normal, and the transverse
directions and 〈· · ·〉x,z represents the average in planes parallel to the wall. We will
not discuss in detail the minimal constraints that must be imposed on the initial
conditions in order to have a reasonable simulation. In fact, this minimal set of
constraints will probably depend on the type of flow as well as on the quantities that
are measured in the simulation. Here we only suppose that these constraints do exist
in order to give a precise definition of equivalent LES:

(a) Two LES are statistically equivalent if the domain of the flow and the boundary
conditions are the same and if the initial conditions satisfy the same set of constraints.

Carrying out an ensemble of equivalent LES can be computationally effective only
if the different members in the set of LES are independent. Here again, the definition
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of independent LES might depend on the flow as well as on the quantities that are
measured in the simulation. Along the same lines as for the definition of statistically
equivalent LES, we propose the following definition:

(b) Two LES are statistically independent if their initial conditions are generated
with uncorrelated random numbers wl .

We remark that for a stationary flow, such equivalent and independent initial
conditions can be obtained by running a single LES and recording several velocity
fields separated by at least one large-eddy turnover time when turbulence is fully
developed.

2.2. Universal model parameters in LES

Classical closure strategies in LES amount to modelling τij in terms of the resolved
velocity field:

τij = C mτij[ūl , ∆], (2.6)

where ∆ is the filter width. The tensor mτij is assumed to characterize the dependence
on both the filter width and the specific realization of the large-scale flow ūl . On the
other hand, we will assume that the parameter C depends only on the type of flow
and on the filter shape and should not depend on any particular realization of the
large-scale velocity field.† In the following, we will refer to this assumed property as
the universality of the model parameters in LES: For a given geometry and for a given
Reynolds number, the model parameters should be the same in all equivalent LES. This
concept of universality does not imply that the model parameters are constant in
space and time. Clearly, C = C(x, t) can be a field quantity that needs to be adapted
both in space and time to the local conditions of the flow. However, in our approach
the variations of C are not assumed to have their origin in possible fluctuations in
the large-scale flow. Rather, C is expected to depend only on the averaged properties
of the flow, and in that sense it shares many properties with RANS quantities.

The assumption that the model parameters are universal has a direct influence on
the formulation of models in an ensemble of statistically equivalent LES. In (2.2),
these models should have the following structure:

τrij = C mτij[ū
r
l , ∆], (2.7)

where C is now independent of the realization index r.
It must be noted, however, that the development of the dynamic procedure in some

ways challenges this viewpoint. In the dynamic procedure, information from the small
scales of ūi is used for estimating the model parameters. This procedure is known to
produce highly fluctuating model parameters. Such a property is sometimes regarded
as a proof of the capability of the dynamic procedure to produce model parameters
that account for the local conditions of the flow. However, these fluctuations in C
are responsible for instabilities, and some averaging procedures are used to avoid this
difficulty. We propose in § 3 an approach that reconciles the dynamic procedure with
the concept of a universal model parameter. In this sense, it is somewhat different
from other procedures in which the concept of a universal parameter has not been
adopted, such as the local dynamic procedure developed by Ghosal et al. (1995), the
Lagrangian dynamic procedure proposed by Meneveau, Lund & Cabot (1996), or the
time lagging procedure proposed by Piomelli & Liu (1995).

† Of course, more sophisticated models with more than one term have also been proposed, but
the specific roles of the model parameters and of the model tensors mτij remain the same.
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2.3. New modelling concepts

The information from an ensemble of LES fields opens new possibilities in the
modelling of the τrij . Indeed, it is now conceivable to introduce an explicit dependence
on ensemble-averaged quantities into the models for τrij .

2.3.1. Model based on the fluctuating strain tensor

The first model we propose is based on the fluctuating part of the rate-of-strain
tensor:

τrij = −2νe(S̄
r
ij − 〈S̄ij〉) ≡ −2νeδS

r
ij , (2.8)

where νe is the eddy viscosity. This formulation has some nice properties. The averaged
total dissipation is given by

E = 〈2νTδSrijδSrij〉+ 2ν0〈SrijS rij〉, (2.9)

and consequently the turbulent dissipation originates only from the fluctuating part
of the strain tensor. The mean part contributes only to the molecular dissipation.
This property ensures that the model will not produce dissipation in a laminar region.
In addition, while this model is dissipative on average (provided the eddy viscosity
is positive), individual realizations can have negative dissipation, thus representing
the inverse transfers of energy from the small unresolved scales to the large ones
(backscatter) (Leith 1990; Mason & Thomson 1992; Carati, Ghosal & Moin 1995a).
It is generally believed that backscatter originates from fluctuation phenomena in
the subgrid scales, and representation of this effect through fluctuations in the strain
tensor is thus reasonable.

Results using this model for the wake flow are given in sections below. It has already
been used in channel flow, where the plane of homogeneity is used to compute the
average (Schumann 1975). However, the ensemble of LES allows the use of such
models even in fully inhomogeneous flows. Of course, many other models might
be considered along the same lines, and the fluctuating strain rate is not the only
quantity that could enter the model. In this paper, we will restrict our investigations
to the model (2.8) in the study of the wake flow. However, we mention in the next
subsection another possible use of the information from an ensemble of LES in the
case of anisotropic flows.

2.3.2. Anisotropic model

Anisotropic effects are almost universally observed in turbulence. However,
anisotropy usually originates from complex interactions between flow direction, solid
boundaries and external constraints like pressure gradient or global rotation. It is
thus quite difficult to predict a priori the main consequences of this anisotropy. In the
context of statistical averaged LES, we have access at any instant to mean quantities
that will display the anisotropic structure of the turbulence even for fully inhomo-
geneous flows. A model that would directly take advantage of the ensemble of LES
could be

τrij ≈ µγikγjlS rkl , (2.10)

where the factor µ plays the role of an eddy viscosity but through an anisotropic
relation between the subgrid-scale stress and the strain tensor. The tensor γij should
be a measure of the anisotropy. It could be constructed from the velocity fluctuations:

γij =
3〈δuri δurj〉
〈δurkδurk〉 . (2.11)
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This model reduces to the classical eddy viscosity model for isotropic turbulence
(γij = δij). The sign of the dissipation depends only on the sign of µ since the product
of τrij and the strain tensor is given by

τijSij = µSijγikγjlSkl = µ(Sijγik)
2. (2.12)

Moreover, if there is no turbulence in one direction (δua = 0), the model has the
property that the components τia = τaj = 0. This is an expected property that is
missed by isotropic eddy viscosity models.

3. Coupling the dynamic procedure and the ensemble of LES
3.1. Classical dynamic procedures

The dynamic procedure is based on an identity (Germano 1992) that relates the
unknown stress generated by different filters:

Lij + τ̂ij − Tij = 0, (3.1)

where Tij = ûiuj − ûiûj is the subgrid-scale stress generated by the successive appli-
cation to the velocity field of two filters that are respectively denoted by ¯ and by ̂.
The Leonard tensor is given by Lij = ̂̄uiūj − ûiûj . It depends only on ūi so that it
does not require any modelling. This identity (3.1) is of course only valid for the
exact and unknown subgrid-scale stresses. When models are used, τij ≈ Cmτij[v̄l] and

Tij ≈ CmTij [v̂l], the difference Eij = Lij + Ĉmτij − CmTij between the right-hand side
and the left-hand side of (3.1) can be considered as a measure of the performance of
the model. The dynamic procedure uses this measure in order to prescribe the model
parameter C by minimizing Eij . When a homogeneous direction exists in the problem,
C is estimated as (Germano et al. 1991; Lilly 1992; Ghosal et al. 1995):

C ≈ 〈LijMij〉h
〈MijMij〉h , (3.2)

where Mij = mTij − m̂τij and the average 〈· · ·〉h is supposed to be taken over the
homogeneous direction(s). Obviously, this approach is restricted to special geometries
with homogeneous direction(s). Complex geometries require an alternative treatment
in which a local definition of the parameter C can be proposed. This is the case
in the local dynamic procedure developed by Ghosal et al. (1995) as well as in the
Lagrangian dynamic procedure proposed by Meneveau et al. (1996). In both cases, the
model parameter is directly related to the large-scale field ūi through the tensors Lij
and Mij . It will thus vary from one realization to another, even if the underlying LES
are supposed to be equivalent. As already mentioned in § 2.2, the dynamic procedure
thus produces model parameters that are not universal. In the early stages of its
development, the fact that the model parameters are directly related to the specific
realization of the flow was considered advantageous because this allowed the model
to be more adaptable. However, this property proved to be problematic because it
generates highly variable model parameters that cause numerical instabilities. Some
of these practical problems have been resolved in the aforementioned local and
Lagrangian versions of the dynamic procedure.

3.2. Ensemble-averaged dynamic procedure

The ensemble-averaged dynamic procedure (EADP) we propose here is conceptually
very close to the volume-averaged or plane-averaged versions (3.2) of the dynamic
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procedure. The only difference comes from the nature of the average, which is now
an ensemble average over the set of LES. Considering that R LES (2.2) are computed
simultaneously, the model parameter is now given by

C ≈ 〈LijMij〉
〈MijMij〉 , (3.3)

where 〈· · ·〉 now represents the ensemble average. The expression (3.3) is only valid if
the parameter C is slowly dependent on space and can be taken out of the test filter̂. Such an assumption is not very restrictive, however, since the ensemble averaging
is likely to smooth out the rapid variations in the field. In the next section, it will be
seen that the model coefficient does indeed become smoother as the ensemble size is
increased. The formulation (3.3) guarantees that the model parameters are universal
since they depend only on the statistical properties of the large-scale velocity fields.

In a sense, the ensemble of LES corresponds to an artificial direction of homogen-
eity, which always exists independent of the complexity of the flow. In the unexpected
cases in which the model coefficient remains significantly variable in space for large
ensemble sizes, the EADP could be coupled with other approaches like the local
dynamic procedure developed by Ghosal et al. (1995), the Lagrangian dynamic
procedure proposed by Meneveau et al. (1996), or the time lagging procedure proposed
by Piomelli & Liu (1995). The coupling of the EADP with any of these methods would
lead to a negligible cost since it would be used only once for the whole ensemble.

In some cases, the fact that the model parameter cannot be adapted to the specific
realization of the large-scale flow might be considered as a drawback of the EADP. In
particular, a greater adaptability might be desirable for very intermittent flows with,
for instance, localized turbulent spots appearing inside a laminar sea (Henningson,
Spalart & Kim 1987). Indeed, when the turbulent spots appear randomly in a
statistically homogeneous domain, the model parameter predicted by the EADP is
quasi-constant and is weakly affected by the turbulent spots. In fact, the EADP
implicitly assumes that the model tensor mij[ū

r
l ] should, alone, take care of the

turbulence activity. We realize however that, because the perfect model is not available,
the assumption of a universal parameter might be sometimes inappropriate, depending
on both the nature of the flow and the model adopted for mij[ū

r
l ]. However, it

must be noted that the same difficulty would be encountered for models that use
parameters that are chosen a priori as well as for dynamic models that are based
on volume or plane averaging. Moreover, in the test cases presented in the following
sections, the predictions of the EADP are encouraging. More localized approaches
(Ghosal et al. 1995; Meneveau et al. 1996; Piomelli & Liu 1995) for which the
assumption of a universal model parameter is not adopted would probably respond
more strongly to intermittent flows. It must be noted, however, that these generalized
dynamic procedures are usually combined with models that are based on statistical
approaches. In these cases, use of the localized dynamic model in a sense contradicts
the underlying statistical assumptions used to build the eddy viscosity model.

Finally, we remark that the model parameter is the only coupling between the
different LES. The difference between DNS, LES, and an ensemble of LES coupled
through the EADP is illustrated in figure 1. As a consequence, the EADP is perfectly
suited to distributed processing on parallel computers. The most natural implemen-
tation of this procedure amounts to running each member of the ensemble of LES
on a separate node. Communication between the different processes is limited to the
computation of the model coefficient. Otherwise each field ūri is advanced in time
independently of the others. This property should guarantee very good scalability if
large ensemble sizes are explored.
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Figure 1. The differences between DNS, LES, and ensemble of LES using the EADP are illustrated.
In DNS (a), only the right-hand side of the Navier–Stokes equations is needed for advancing the
velocity field in time. In traditional LES (b), an additional modelling term is needed. In the EADP
(c), one substep, common to all the LES, is added for computing the model parameters used in
each of the simulations. This is the only point where information is required from the other fields.

4. Tests in isotropic turbulence
4.1. Decaying turbulence

The EADP described in the previous section was tested in decaying isotropic tur-
bulence for 323 LES. The tensor mτij was chosen to correspond to the Smagorinsky
model:

τrij ≈ −2CS̄rS̄ rij . (4.1)

A series of numerical experiments (Carati, Wray & Cabot 1996) has determined how
large the ensemble of simultaneous LES must be (i.e. how large R should be). The
criteria used to determine the minimal size of the ensemble were focused on

(i) the spatial variability of C;
(ii) the percentage of negative C;

(iii) comparison with the volume-averaged dynamic model;
(iv) comparison with direct numerical simulations.
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Figure 2. Typical one-dimensional profiles (a) and probability distribution function (b) of C in
decaying isotropic turbulence for R = 1 (long-dashed line), R = 4 (short-dashed line) and R = 16
(solid line). The averaged value of 〈C〉 ≈ 0.02 before clipping is almost independent of the ensemble
size. The expected ‘smoothing effect’ of the ensemble averaging is reflected by a rapidly decreasing
deviation σ2

C = 〈(C − 〈C〉)2〉 with R. For instance, σC ≈ 0.3 for R = 1, σC ≈ 0.06 for R = 4, and
σC ≈ 0.02 for R = 16.

Before clipping After clipping

R 〈C〉 σC 〈C〉 σC

1 0.018 0.29 0.089 0.19
2 0.020 0.12 0.048 0.081
4 0.020 0.057 0.031 0.040
8 0.019 0.031 0.024 0.024

16 0.018 0.020 0.020 0.017
32 0.018 0.013 0.019 0.012

Table 1. Average and standard deviation of the model coefficient (before and after clipping)
versus the ensemble size.

The results are quite encouraging. It appears that with only 16 simultaneous LES, the
ensemble-averaged dynamic model performs as well as the volume-averaged model.
The spatial variability of C decreases drastically when R increases. This is also reflected
in the probability distribution function (PDF) of C (see figure 2). Some quantitative
measurements of the spatial variability as a function of the ensemble size are given
in table 1 for both the model parameter given by (3.3) and its clipped version defined
by C+ = C if C > 0 and C+ = 0 if C < 0. In particular, the fraction of negative C
before clipping drops from 41% for R = 1 to 15% for R = 16. Hence, the fraction of
points for which C has to be clipped is still significant even for R = 16. However, the
consequences of this clipping are less and less significant because the clipped values
of C have smaller magnitudes for increasing ensemble sizes. For instance, the ratio
between the averaged values of C before and after the clipping is only 0.19 for R = 1
while it reaches 0.91 for R = 16. Hence, the effect of clipping on physical quantities
like the energy dissipation becomes small for R > 16.

The comparison between a 5123 DNS and the dynamic model shows good agree-
ment both for the total resolved energy and for the spectra. The ensemble-averaged
results for R = 16 are indistinguishable from the volume-averaged values and only the
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Figure 3. Comparison of the energy decay between the truncated DNS (solid line) and the averaged
energy predicted by the set of LES using EADP (dashed line). The dotted lines correspond the
averaged energy ± one standard deviation as predicted by the set of LES using EADP.
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Figure 4. Resolved energy (a) and compensated energy spectrum (b) in forced isotropic turbulence:
ensemble- (�) versus volume-averaged (�) dynamic procedure. Dotted lines and dashed lines
correspond to the mean ± one standard deviation in the EADP and in the volume-averaged
dynamic model, respectively.

EADP results are plotted on figure 3. An ensemble of independent volume-averaged
LES was run to allow comparison of both the means and the standard deviations.

4.2. Forced turbulence

We have run an ensemble of 16 323 forced turbulence LES with zero molecular
viscosity. Figure 4 shows that the mean resolved energy and the standard deviation
evolve similarly for both the volume- and ensemble-averaged models. This shows that
the coupling induced by the computation of the model parameter through the EADP
approach does not introduce spurious correlations between the different members
of the ensemble. The standard deviations remain similar in the two approaches,
indicating that the LES fields in the EADP remain nearly as independent as those
in the ensemble of independent volume-averaged simulations. It is also interesting to
compare the compensated energy spectrum Ẽ(k) = E(k)k5/3ε−2/3, where E(k) is the
energy spectrum and ε is the dissipation rate. Of course, with 323 LES, we do not
expect to observe a well-developed inertial range or to obtain a very good estimate of
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the Kolmogorov constant. However, examination of the results in figure 4 indicates
that the observed ‘Kolmogorov constant’ is reasonable.

5. Tests in wake flows
The flow considered here is a time-evolving plane wake for which data from both

direct numerical simulations (Moser & Rogers 1994; Moser, Rogers & Ewing 1997)
and large-eddy simulations (Ghosal & Rogers 1997) are available. This flow is both
statistically non-stationary and inhomogeneous and should thus be a more demanding
test of the EADP than the homogeneous flows studied in the previous section.

The pseudospectral direct numerical simulation of the plane wake considered here
has been described in detail by Moser & Rogers (1994) and Moser et al. (1997).
The spatial dependence of the independent variables is represented in the periodic
streamwise and spanwise directions by Fourier basis functions and the cross-stream
dependence is represented by a class of Jacobi polynomials on a mapped infinite
domain. Up to 512×195×128 modes are required to accurately resolve the turbulence.
The Reynolds number based on the integrated mass flux deficit,

µ = −
∫ +∞

−∞
(U(y)−U∞) dy, (5.1)

is Re = µ/ν = 2000. In a time-evolving plane wake, the integrated mass flux deficit is
constant.

LES of the same flow using the dynamic procedure, with a filtered DNS field as
an initial condition, have been reported by Ghosal & Rogers (1997). The simulations
were pseudospectral like the DNS, but the spatial dependence of the vorticity in the
inhomogeneous cross-stream direction is represented in terms of Fourier modes on
a finite domain. The appropriate non-periodic velocity field is then calculated using
the method of Corral & Jimenez (1995). The number of modes used in the LES was
64× 48× 16 and the same number of modes and same numerical method have been
adopted (Carati & Rogers 1998) for the EADP LES examined here. Thus each LES
requires up to 260 times fewer modes than the DNS.

5.1. The subgrid-scale models

In the present study, we have investigated three different models, all based on the
eddy viscosity concept. The first one is the Smagorinsky model introduced in § 4.1. In
this model, the inertial-range scaling for the eddy viscosity νt ∼ ∆̄4/3ε̄1/3 is expressed in
terms of the resolved strain-rate tensor by using the approximation for the dissipation
rate ε̄ ∼ νtS̄ rkl S̄ rkl . This approximation is required in traditional LES because a separate
equation for the dissipation rate is not usually computed. However, in LES based on
the dynamic procedure, the dimensional product Cε = Cε̄1/3 can be predicted directly.
This has motivated (Wong & Lilly 1994; Carati, Jansen & Lund 1995b) an alternative
model based on the inertial-range scaling, such as
Model A:

τrij ≈ −2Cε∆̄
4/3S̄ rij . (5.2)

Finally, we have considered a third model for which the tensor τrij is given by (2.8):
Model B:

τrij ≈ −2Cε∆̄
4/3(S̄ rij − 〈S̄ rij〉), (5.3)

where the angular brackets indicate ensemble-averaging over all realizations. The
possible advantages of this last model have been discussed in § 2.3.
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In all three models, the sign of C (or of Cε) will also determine the sign of the
subgrid-scale dissipation, since a negative C corresponds to a negative eddy viscosity.
In order to avoid numerical instabilities, the model parameter must then be set equal
to a minimal positive value (the clipping procedure, see Ghosal et al. 1995) at points
where the total viscosity (eddy plus molecular) is negative. For the Smagorinsky
model, the stability condition

C∆̄2(2S̄ rkl S̄
r
kl)

1/2 + ν0 > 0 (5.4)

depends on the realization. This is an undesirable property since C is supposed to
be a universal flow characteristic for all members of the ensemble. An alternative
formulation in which C is indeed the same for all realizations results from the
following stability condition:

C∆̄2 max
r
{(2S̄ rkl S̄ rkl)1/2}+ ν0 > 0. (5.5)

In the limit of an infinite number of realizations, the maximum of the resolved strain-
rate tensor amplitude would be almost unbounded. Hence, for the Smagorinsky
model, it is reasonable to simply impose C > 0. For model A, however, the situation
is different. The stability condition is naturally the same in each realization:

Cε∆̄
4/3 + ν0 > 0. (5.6)

For simplicity, the same condition has been used for model B.

5.2. The initial conditions

In practice, initial conditions for LES can be built either by filtering a DNS (when it
is available) or by generating a random velocity field satisfying some constraints (as
discussed in § 2.1). For the EADP, we have to generate R equivalent but independent
fields. In the case of isotropic turbulence, the only constraint that had to be satisfied by
the initial field was the energy spectrum. We thus have used Rogallo’s (1981) approach
to construct R initial conditions with the same spectrum and independent phases. For
the time-evolving plane wake, random initial conditions could be generated following
the same approach as the one used for initializing the DNS. However, for the plane
wake, a large number of quantities are measured and any of them might be considered
as constraints that need to be maintained by all realizations (e.g. profiles of mean
velocity, turbulent kinetic energy, enstrophy, etc.). The main purpose of the present
study is to test the EADP rather than evaluating an initialization procedure. For that
reason we have used a simple trick to generate R statistically identical initial fields.
Our procedure is based on the fact that the observed quantities are computed through
plane averages and are thus invariant under the change

ūi(x, y, z, t0) −→ ūi(x+ δx, y, z + δz, t0). (5.7)

Thus by using R values of (δrx, δ
r
z), R initial velocity fields are produced that clearly

satisfy the requirement that the LES realizations be statistically equivalent. However,
this procedure does not produce statistically independent initial conditions, even with
random choices for (δrx, δ

r
z), because the two fields are identical and simply shifted in

space. Without the subgrid model terms, all the statistics would remain identical for
all times. However, the model terms will have the desirable effect of de-correlating the
different members of the ensemble. This results because the universal model terms act
at the same (x− z) location in all the realizations, not at the same relative position in
the shifted flows. Examples of this de-correlation are given in figure 5, in which the
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Figure 5. Test of de-correlation of the LES fields. The reduced maximal difference ∆Q is plotted
versus time for the wake width (a, solid line), the resolved turbulent kinetic energy density integrated
in y (a, dashed line), the resolved turbulent kinetic energy dissipation integrated in y (a, dotted line)
and the maximum grid-point value of the x-component of the resolved vorticity, ωxrmax

(b).

reduced maximal difference

∆Q =
maxensemble(Q)−minensemble(Q)

〈Q〉 (5.8)

is given for various quantities Q like the wake width, the resolved turbulent kinetic
energy density integrated in y, and the resolved turbulent kinetic energy dissipation
rate integrated in y. For these global quantities, ∆Q is originally 0 and rapidly reaches
values of the order of 5%. We investigated the behaviour of ∆Q for a local quantity,
the maximum grid-point value of the streamwise vorticity component ωxrmax

. Here,
∆Q is originally 5% and rapidly reaches values of the order of 20 to 40%. These
measurements indicate a fairly rapid de-correlation of the different members of the
ensemble.

Again, we stress here that this methodology used for constructing the initial
conditions has the major advantage of guaranteeing that the statistical properties
are initially identical for each realization, while results presented in figure 5 indicate
reasonable de-correlations. However, when no DNS is available, it will be unavoidable
to develop a suitable approach for constructing initial conditions that will satisfy the
criteria of independence and equivalence as described in § 2.1. In that case, the
constraints to be satisfied by the initial conditions will most probably come from
experimental data.

5.3. Tests of convergence

In order to test the convergence of the EADP results for increasing values of R, two
types of tests were performed. First, the ensemble-averaged values of several relevant
quantities in the time-evolving wake flow have been compared for various ensemble
sizes. In particular, the results for (i) the wake width, (ii) the turbulent kinetic energy
density integrated in y and (iii) the turbulent kinetic energy dissipation rate integrated
in y are compared for R = 4, 8, 16, and 32. As can be seen from figure 6, only the
turbulent kinetic energy integrated in y is affected by the number of realizations.
However, the values obtained with 16 and 32 realizations are almost indistinguishable
for all three quantities.
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Figure 6. Convergence of the ensemble-averaged evolutions of the wake width (a), the resolved
turbulent kinetic energy density integrated in y (b) and the resolved turbulent kinetic energy
dissipation integrated in y (c). Various ensemble sizes are compared: R = 4 (◦), R = 8 (�), R = 16
(�), and R = 32 (4).

Second, the influence of the ensemble size on the computed eddy viscosity was
examined. The profile of the mean eddy viscosity and the fraction of grid points
for which the eddy viscosity has been clipped according to the criterion (5.6) are
compared for some values of R in figures 7 and 8. As seen in figure 7, the eddy
viscosity profile depends only weakly on the number of realizations for values of R
between 4 and 32, and the profiles are nearly identical for R = 16 and R = 32. As
expected, the fraction of grid points requiring clipping of the model coefficient C
rapidly decreases with R (figure 8). The total fraction of clipped points integrated
in y is less than 1% for R = 16 during the entire simulation. This, combined with
the very small change in most of the ensemble-averaged quantities as R is increased
from 16 to 32, supports the adoption of R = 16 as a reasonable ensemble size for
both model testing and production of LES. Because this value of R is the same as
that required for the simulation of homogeneous turbulence, it seems reasonable to
hope that R = 16 provides an adequate ensemble size for the EADP in even more
complicated geometries.

The comparison between various ensemble sizes is presented here only for model
A (2.4). The same conclusions concerning the convergence of the results and the
appropriate value of R are obtained when either the Smagorinsky model or model B
(2.5) is used.
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Figure 7. Convergence of the eddy viscosity profile for t = 0 (a) and for t = 250 (b). Various
ensemble sizes are compared: R = 4 (◦), R = 8 (�), R = 16 (�), and R = 32 (4). The eddy
viscosity is normalized by the molecular viscosity.
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Figure 8. Profile of the fraction of grid points requiring clipping of the coefficient C at t = 0 (a)
and t = 250 (b). Two ensemble sizes are compared: R = 4 solid line and R = 32 dashed line.

5.4. Comparison of models

As already mentioned, an important motivation for developing the EADP is the
possibility of investigating new concepts in subgrid-scale modelling. Here, the filtered
DNS of Moser et al. (1997) is compared with the LES predictions of Ghosal & Rogers
(1997) and the predictions of the models presented in § 5.1. We have also added the
results of a LES without a subgrid-scale model. In all cases, and in agreement with
the conclusion of the preceding section, the simulations for the EADP have been
performed with R = 16.

The first important conclusion is that the plane-averaged and ensemble-averaged
dynamic procedures lead to indistinguishable results when they are applied with
the same model. For instance, in the LES of Ghosal & Rogers, the plane-averaged
dynamic procedure was implemented with the standard Smagorinsky model. Their
results are identical to those obtained when the Smagorinsky model is used with
the EADP. In the following comparison, the Smagorinsky case will refer to both the
EADP and the plane-averaged LES of Ghosal & Rogers.

The evolutions of (i) the wake width, (ii) the resolved turbulent kinetic energy
density integrated in y, and (iii) the resolved turbulent kinetic energy production
integrated in y are presented in figure 9. The wake width is dominated by large-
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Figure 9. Evolution of the wake width (a), the resolved turbulent kinetic energy density integrated
in y (b) and the resolved turbulent kinetic energy production integrated in y (c) obtained from
the filtered DNS (•); the Smagorinsky model (—), the model A (�), the model B (+), and no
model (×).

scale flow features and consequently is not strongly affected by the models. In fact,
the prediction of the LES without a subgrid-scale model (an under-resolved DNS)
provides a reasonable approximation to the value obtained by filtering the DNS data.

The turbulent kinetic energy density integrated in y is more difficult to predict using
LES. Not using a subgrid-scale model results in poor prediction of resolved energy
density. Model A leads to almost the same result as the Smagorinsky model. This is
a general feature of the dynamic procedure that has been noted previously (Wong &
Lilly 1994; Carati et al. 1995b). However, within the dynamic procedure approach,
model A is computationally much cheaper to implement than the Smagorinsky model
and this motivates the use of the scaling (5.2) for the subgrid stress instead of (4.1). The
model B, from which the ensemble-averaged resolved strain rate has been removed,
leads to results that better fit the DNS data in the early stages of the simulation. At
later times, however, this model is further from the filtered DNS values than model
A and the Smagorinsky model. In general the predictions of all three models seem
comparable.

The evolution of the turbulent kinetic energy production also shows the important
role of the models. The no-model LES prediction for the resolved energy production is
much too high in the early stage and too low at later times. Again, model A leads to al-
most the same result as the Smagorinsky model. Model B systematically over-predicts
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the energy production. However, it would be rather speculative to draw any definitive
conclusion regarding which model (A or B) is better from the results presented here.

6. Conclusions
The tests presented here have shown that the information from statistically equiv-

alent resolved velocity fields may be useful in deriving new subgrid-scale models. We
have used the additional information available from the different LES to propose
an ensemble-averaged version of the dynamic procedure. This dynamic procedure
presents several advantages.

First, a local version of the ensemble-averaged dynamic model is derived in the
limit of large ensemble sets. The local formulation does not rely on any homogeneity
assumption and can be adapted to any geometry, unlike the classical volume- (or
plane- or line-) averaged dynamic models.

Second, the practical limit of large ensemble sets is closely approached for R ≈ 16.
This is indicated by many diagnostics. For example, the PDF of the model parameter
appears to be very peaked for R = 16 and its spatial variations decrease drastically for
increasing ensemble sizes and seem to be quite mild for R = 16. Also, all the measured
quantities, both in homogeneous turbulence and in the plane wake, are almost identical
for R = 16 and R = 32. This is, of course, a major encouragement for further
developing the EADP methodology. The fact that the same value R = 16 appears to
be appropriate for both homogeneous turbulence and the plane wake suggests that this
might be an adequate ensemble size for converged results even in more complex flows.

Also, the EADP reconciles the dynamic procedure with the concept of a universal
parameter in turbulence modelling. This is a very desirable property since it is
commonly accepted that model parameters should depend only on the external
conditions of the flow and not on the particular realisation that is observed.

Considering the rapid development of parallel computers, the use of an ensemble
of statistically equivalent and independent LES can be regarded as a very promising
technique. This technique can be implemented with fairly small ensemble sizes. Orig-
inal modelling concepts that cannot be implemented in fully inhomogeneous flows by
conventional LES techniques are possible within the framework of the EADP and
warrant further examination. Moreover, the additional computational cost generated
by the use of R simultaneous LES could be compensated by the fact that statistics
can be accumulated much faster with the ensemble of LES if one ensures that all the
realizations are statistically independent.
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